Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Xenotransplantation ; 30(4): e12804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37148126

RESUMO

BACKGROUND: Pig-derived tissues could overcome the shortage of human donor organs in transplantation. However, the glycans with terminal α-Gal and Neu5Gc, which are synthesized by enzymes, encoded by the genes GGTA1 and CMAH, are known to play a major role in immunogenicity of porcine tissue, ultimately leading to xenograft rejection. METHODS: The N-glycome and glycosphingolipidome of native and decellularized porcine pericardia from wildtype (WT), GGTA1-KO and GGTA1/CMAH-KO pigs were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection. RESULTS: We identified biantennary and core-fucosylated N-glycans terminating with immunogenic α-Gal- and α-Gal-/Neu5Gc-epitopes on pericardium of WT pigs that were absent in GGTA1 and GGTA1/CMAH-KO pigs, respectively. Levels of N-glycans terminating with galactose bound in ß(1-4)-linkage to N-acetylglucosamine and their derivatives elongated by Neu5Ac were increased in both KO groups. N-glycans capped with Neu5Gc were increased in GGTA1-KO pigs compared to WT, but were not detected in GGTA1/CMAH-KO pigs. Similarly, the ganglioside Neu5Gc-GM3 was found in WT and GGTA1-KO but not in GGTA1/CMAH-KO pigs. The applied detergent based decellularization efficiently removed GSL glycans. CONCLUSION: Genetic deletion of GGTA1 or GGTA1/CMAH removes specific epitopes providing a more human-like glycosylation pattern, but at the same time changes distribution and levels of other porcine glycans that are potentially immunogenic.


Assuntos
Galactosiltransferases , Polissacarídeos , Animais , Suínos , Humanos , Animais Geneticamente Modificados , Transplante Heterólogo/métodos , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Epitopos
2.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838829

RESUMO

Glycosylation, especially N-glycosylation, is one of the most common protein modifications, with immense importance at the molecular, cellular, and organismal level. Thus, accurate and reliable N-glycan analysis is essential in many areas of pharmaceutical and food industry, medicine, and science. However, due to the complexity of the cellular glycosylation process, in-depth glycoanalysis is still a highly challenging endeavor. Contamination of samples with oligosaccharide impurities (OSIs), typically linear glucose homo-oligomers, can cause further complications. Due to their physicochemical similarity to N-glycans, OSIs produce potentially overlapping signals, which can remain unnoticed. If recognized, suspected OSI signals are usually excluded in data evaluation. However, in both cases, interpretation of results can be impaired. Alternatively, sample preparation can be repeated to include an OSI removal step from samples. However, this significantly increases sample amount, time, and effort necessary. To overcome these issues, we investigated the option to enzymatically degrade and thereby remove interfering OSIs as a final sample preparation step. Therefore, we screened ten commercially available enzymes concerning their potential to efficiently degrade maltodextrins and dextrans as most frequently found OSIs. Of these enzymes, only dextranase from Chaetomium erraticum and glucoamylase P from Hormoconis resinae enabled a degradation of OSIs within only 30 min that is free of side reactions with N-glycans. Finally, we applied the straightforward enzymatic degradation of OSIs to N-glycan samples derived from different standard glycoproteins and various stem cell lysates.


Assuntos
Glicoproteínas , Oligossacarídeos , Glicoproteínas/química , Oligossacarídeos/metabolismo , Glicosilação , Polissacarídeos/química , Processamento de Proteína Pós-Traducional
3.
Exp Suppl ; 112: 137-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34687009

RESUMO

The in-depth characterization of protein glycosylation has become indispensable in many research fields and in the biopharmaceutical industry. Especially knowledge about modulations in immunoglobulin G (IgG) N-glycosylation and their effect on immunity enabled a better understanding of human diseases and the development of new, more effective drugs for their treatment. This chapter provides a deeper insight into capillary (gel) electrophoresis-based (C(G)E) glycan analysis, addressing its impressive performance and possibilities, its great potential regarding real high-throughput for large cohort studies, as well as its challenges and limitations. We focus on the latest developments with respect to miniaturization and mass spectrometry coupling, as well as data analysis and interpretation. The use of exoglycosidase sequencing in combination with current C(G)E technology is discussed, highlighting possible difficulties and pitfalls. The application section describes the detailed characterization of N-glycosylation, utilizing multiplexed CGE with laser-induced fluorescence detection (xCGE-LIF). Besides a comprehensive overview on antibody glycosylation by comparing species-specific IgGs and human immunoglobulins A, D, E, G, and M, the chapter comprises a comparison of therapeutic monoclonal antibodies from different production cell lines, as well as a detailed characterization of Fab and Fc glycosylation. These examples illustrate the full potential of C(G)E, resolving the smallest differences in sugar composition and structure.


Assuntos
Eletroforese Capilar , Imunoglobulina G , Anticorpos Monoclonais , Glicosilação , Humanos , Espectrometria de Massas
4.
Microb Cell Fact ; 20(1): 162, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419057

RESUMO

BACKGROUND: Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS: Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION: The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.


Assuntos
Acetilglucosamina/metabolismo , Enzimas/isolamento & purificação , Enzimas/metabolismo , Metagenômica/métodos , Polissacarídeos/química , Polissacarídeos/metabolismo , Sulfatos/metabolismo , Enzimas/genética , Cinética , Sulfatos/química
5.
Commun Biol ; 4(1): 832, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215830

RESUMO

Sialyl-Lewis x (sLex, CD15s) is a tetra-saccharide on the surface of leukocytes required for E-selectin-mediated rolling, a prerequisite for leukocytes to migrate out of the blood vessels. Here we show using flow cytometry that sLex expression on basophils and mast cell progenitors depends on fucosyltransferase 6 (FUT6). Using genetic association data analysis and qPCR, the cell type-specific defect was associated with single nucleotide polymorphisms (SNPs) in the FUT6 gene region (tagged by rs17855739 and rs778798), affecting coding sequence and/or expression level of the mRNA. Heterozygous individuals with one functional FUT6 gene harbor a mixed population of sLex+ and sLex- basophils, a phenomenon caused by random monoallelic expression (RME). Microfluidic assay demonstrated FUT6-deficient basophils rolling on E-selectin is severely impaired. FUT6 null alleles carriers exhibit elevated blood basophil counts and a reduced itch sensitivity against insect bites. FUT6-deficiency thus dampens the basophil-mediated allergic response in the periphery, evident also in lower IgE titers and reduced eosinophil counts.


Assuntos
Basófilos/metabolismo , Fucosiltransferases/genética , Expressão Gênica , Antígeno Sialil Lewis X/biossíntese , Sequência de Bases , Basófilos/citologia , Células Cultivadas , Estudos de Coortes , Selectina E/metabolismo , Fucosiltransferases/deficiência , Perfilação da Expressão Gênica/métodos , Humanos , Contagem de Leucócitos , Migração e Rolagem de Leucócitos/genética , Migração e Rolagem de Leucócitos/fisiologia , Polimorfismo de Nucleotídeo Único , Homologia de Sequência do Ácido Nucleico
6.
Adv Biochem Eng Biotechnol ; 175: 379-411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33112988

RESUMO

Glycosylation affects the properties of biologics; thus regulatory bodies classified it as critical quality attribute and force biopharma industry to capture and control it throughout all phases, from R&D till end of product lifetime. The shift from originators to biosimilars further increases importance and extent of glycoanalysis, which thus increases the need for technology platforms enabling reliable high-throughput and in-depth glycan analysis. In this chapter, we will first summarize on established glycoanalytical methods based on liquid chromatography focusing on hydrophilic interaction chromatography, capillary electrophoresis focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focusing on matrix-assisted laser desorption; we will then highlight two emerging technologies based on porous graphitized carbon liquid chromatography and on ion-mobility mass spectrometry as both are highly promising tools to deliver an additional level of information for in-depth glycan analysis; additionally we elaborate on the advantages and challenges of different glycoanalytical technologies and their complementarity; finally, we briefly review applications thereof to biopharmaceutical products. This chapter provides an overview of current state-of-the-art analytical approaches for glycan characterization of biopharmaceuticals that can be employed to capture glycoprotein heterogeneity in a biopharmaceutical context.


Assuntos
Medicamentos Biossimilares , Glicômica , Glicosilação , Espectrometria de Massas , Polissacarídeos , Tecnologia
7.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557948

RESUMO

Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.


Assuntos
Leite Humano/química , Oligossacarídeos/química , Isótopos de Carbono/química , Catálise , Glicosiltransferases/química , Humanos , Isótopos de Nitrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nucleotídeos de Uracila/química
8.
Biotechnol J ; 14(3): e1800305, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30076755

RESUMO

A rising amount of known health benefits leads to an increased attention of science and nutrient industry to human milk oligosaccharides (HMOS). The unique diversity of HMOS includes several rare, complex, and high molecular weight structures. Therefore, identification and elucidation of complex structures, which may occur only in traces, poses a daunting analytical challenge, further complicated by the limited access to suitable standards. Regarding this, inherent diversity of HMOS and their structural complexity make them difficult to synthesize. The use of recombinant Leloir-glycosyltransferases offers a common strategy to overcome the latter issues. In this study, linear long-chained Lacto-N-biose-type (LNT) and Lacto-N-neo-type (LNnT) HMOS are tailored far beyond the known naturally occurring length. Thereby novel well-defined reference standards for screening HMOS composition by high performance and high throughput analytics are provided. It is shown here for the first time the synthesis of LNT oligomers up to 26 and LNnT oligomers up to 30 sugar units in a semi-sequential one-pot synthesis as analyzed by high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF). While being a high-throughput method, xCGE-LIF can also handle long chained linkage isomers of challenging similarity, some of them even present only in trace amounts.


Assuntos
Glicosiltransferases/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Eletroforese Capilar/métodos , Fluorescência , Humanos , Lasers , Biossíntese de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Padrões de Referência
9.
Chembiochem ; 18(13): 1317-1331, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28509371

RESUMO

Human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC CMs) may be used in regenerative medicine for individualized tissue transplants in the future. For application in patients, the generated CMs have to be highly pure and well characterized. In order to overcome the prevalent scarcity of CM-specific markers, we quantitatively assessed cell-surface-exposed sialo-glycoproteins and N-glycans of hiPSCs, CM progenitors, and CMs. Applying a combination of metabolic labeling and specific sialo-glycoprotein capture, we could highly enrich and quantify membrane proteins during cardiomyogenic differentiation. Among them we identified a number of novel, putative biomarkers for hiPSC CMs. Analysis of the N-glycome by capillary gel electrophoresis revealed three novel structures comprising ß1,3-linked galactose, α2,6-linked sialic acid and complex fucosylation; these were highly specific for hiPSCs. Bisecting GlcNAc structures strongly increased during differentiation, and we propose that they are characteristic of early, immature CMs.


Assuntos
Membrana Celular/química , Glicômica/métodos , Células-Tronco Pluripotentes Induzidas/química , Miócitos Cardíacos/química , Polissacarídeos/química , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Sequência de Carboidratos , Diferenciação Celular , Membrana Celular/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Fucose/química , Fucose/metabolismo , Galactose/química , Galactose/metabolismo , Gastrinas/genética , Gastrinas/metabolismo , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/genética , Laminina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Polissacarídeos/metabolismo , Receptor EphA7/genética , Receptor EphA7/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Coloração e Rotulagem/métodos
10.
Chembiochem ; 18(13): 1305-1316, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374933

RESUMO

The negatively charged nonulose sialic acid (Sia) is essential for murine development in vivo. In order to elucidate the impact of sialylation on differentiation processes in the absence of maternal influences, we generated mouse embryonic stem cell (mESC) lines that lack CMP-Sia synthetase (CMAS) and thereby the ability to activate Sia to CMP-Sia. Loss of CMAS activity resulted in an asialo cell surface accompanied by an increase in glycoconjugates with terminal galactosyl and oligo-LacNAc residues, as well as intracellular accumulation of free Sia. Remarkably, these changes did not impact intracellular metabolites or the morphology and transcriptome of pluripotent mESC lines. Moreover, the capacity of Cmas-/- mESCs for undirected differentiation into embryoid bodies, germ layer formation and even the generation of beating cardiomyocytes provides first and conclusive evidence that pluripotency and differentiation of mESC in vitro can proceed in the absence of (poly)sialoglycans.


Assuntos
Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , N-Acilneuraminato Citidililtransferase/deficiência , Células-Tronco Pluripotentes/metabolismo , Ácidos Siálicos/metabolismo , Amino Açúcares/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Efeito Fundador , Galactose/metabolismo , Expressão Gênica , Camadas Germinativas/citologia , Glicoconjugados/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , N-Acilneuraminato Citidililtransferase/genética , Células-Tronco Pluripotentes/citologia , Transcriptoma
11.
Biochim Biophys Acta ; 1860(8): 1728-38, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27038647

RESUMO

Facilitated by substantial advances in analytical methods, plasma N-glycans have emerged as potential candidates for biomarkers. In the recent years, several investigations could link aberrant plasma N-glycosylation to numerous diseases. However, due to often limited specificity and sensitivity, only a very limited number of glycan biomarkers were approved by the authorities up to now. The inter-individual heterogeneity of the plasma N-glycomes might mask disease related changes in conventional large cross-sectional cohort studies, with a one-time sampling approach. But, a possible benefit of longitudinal sampling in biomarker discovery could be, that already small changes during disease progression are revealed, by monitoring the plasma N-glycome of individuals over time. To evaluate this, we collected blood plasma samples of five healthy donors over a time period of up to six years (min. 1.5 years). The plasma N-glycome was analyzed by xCGE-LIF, to investigate the intra-individual N-glycome variability over time. It is shown, that the plasma N-glycome of an individual is remarkably stable over a period of several years, and that observed small longitudinal changes are independent from seasons, but significantly correlated with lifestyle and environmental factors. Thus, the potential of future longitudinal biomarker discovery studies could be demonstrated, which is a further step towards personalized diagnostics. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Glicômica/métodos , Polissacarídeos/sangue , Medicina de Precisão , Adulto , Seguimentos , Humanos , Masculino
12.
Mol Cell Proteomics ; 15(4): 1435-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26785728

RESUMO

PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors andin vitrodifferentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCsin vitro Knock-down ofPMM2by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.


Assuntos
Defeitos Congênitos da Glicosilação/patologia , Glicômica/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Fosfotransferases (Fosfomutases)/deficiência , Células Cultivadas , Defeitos Congênitos da Glicosilação/metabolismo , Perfilação da Expressão Gênica/métodos , Glicosilação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Fosfotransferases (Fosfomutases)/metabolismo , Polissacarídeos/metabolismo
13.
J Virol ; 89(22): 11727-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355090

RESUMO

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope (Env) proteins are extensively decorated with N-glycans, predominantly of the high-mannose type. However, it is unclear how high-mannose N-glycans on Env impact viral spread. We show that exclusive modification of SIV Env with these N-glycans reduces viral infectivity and abrogates mucosal transmission, despite increasing viral capture by immune cell lectins. Thus, high-mannose N-glycans have opposed effects on SIV infectivity and lectin reactivity, and a balance might be required for efficient mucosal transmission.


Assuntos
Produtos do Gene env/metabolismo , Mucosa/virologia , Polissacarídeos/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Linhagem Celular , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Macaca mulatta , Manose/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/metabolismo
14.
Methods Mol Biol ; 1331: 123-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26169738

RESUMO

The ongoing threat of pathogens, increasing resistance against antibiotics, and the risk of fast spreading of infectious diseases in a global community resulted in an intensified development of vaccines. Antigens used for vaccination comprise a wide variety of macromolecules including glycoproteins, lipopolysaccharides, and complex carbohydrates. For all of these antigens the sugar composition plays a crucial role for immunogenicity and protective efficacy of the vaccine. Here, we provide a protocol for N-glycosylation fingerprinting utilizing high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) technology. The method described, enables to analyze the N-glycosylation of specific proteins out of a complex sample or even the total of all N-glycans contained in such a sample. The protocol is exemplarily demonstrated for N-glycosylation fingerprinting of cell culture-derived influenza A and B viruses and their major antigens, the membrane glycoproteins hemagglutinin and neuraminidase.


Assuntos
Antígenos Virais/química , Glicoproteínas/química , Glicoproteínas de Membrana/química , Proteínas Virais/química , Animais , Antígenos Virais/imunologia , Técnicas de Cultura de Células , Cães , Eletroforese Capilar/métodos , Glicoproteínas/imunologia , Glicosilação , Hemaglutininas/química , Hemaglutininas/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/imunologia , Neuraminidase/química , Neuraminidase/imunologia , Polissacarídeos/química , Polissacarídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...